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Abstract
We arrive at a necessary and sufficient criterion that can be readily used
for interconvertibility between general, all-tripartite Gaussian states under
local quantum operation. The derivation involves a systematic reduction that
converts the original complex conditions in high-dimensional, 6n × 6n matrix
space eventually into 2 × 2 matrix problems.

PACS numbers: 03.67.−a, 03.65.Ud, 42.50.Lc

1. Introduction

Continuous variable systems, due to the immense achievements especially on the quantum
optics manipulation of their entangled Gaussian states, have become an important component
of quantum information [1]. All Gaussian states can be prepared starting from coherent states
by experimental means such as beam splitters, phase shifters and squeezers. Teleportation
schemes for continuous variables have been both theoretically proposed and experimentally
implemented [2]. The problems of separability, quantification and distillability for Gaussian
states have been basically solved [3]. Entanglement of formation for symmetric Gaussian
states has been discussed recently [4]. Another advantage of exploiting continuous variable
systems in quantum information processing is the mathematical simplicity of Gaussian states
that support a complete characterization of entanglement transformation under local quantum
operations. The first step towards the theory of entanglement transformation was taken by
Eisert and Plenio [5]. They arrive at the general form of the necessary and sufficient criterion
for the interconvertibility between Gaussian states, one mode in each location. Recently,
Giedke et al [6] have constructed a theory of entanglement transformation for all-bipartite
Gaussian pure states under actions of local quantum operations and classical communication.
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Wang3 et al [7, 8] have extended the Eisert–Plenio scheme to more complicated systems. In
[7] a special form of covariance matrix for the simplest tripartite Gaussian system, with one
mode in each location, was first constructed, and then used to arrive at the necessary and
sufficient criterion for the interconvertibility between the special tripartite-entangled Gaussian
states in the study. The resulting criterion shows that the interconvertible conditions include
not only inequalities but also equalities. Reported subsequently in [8] was also the necessary
and sufficient criterion for all-bipartite Gaussian states. In this paper, we extend our previous
work [7, 8] to all-tripartite Gaussian states, also called an n×n×n system, in which there are n
modes at each of Alice, Bob and Charlie’s locations, and the Gaussians include both pure and
mixed states. Again, by virtue of the normal form of covariance matrix to be constructed in
section 2 for the n×n×n system, in section 3 we arrive at the necessary and sufficient criterion
for the interconvertibility between all-tripartite Gaussian states. Based on the mathematically
abstract criterion established there, we will further propose in section 4 a convenient method
to determine whether a given transformation is possible or not. Finally, we conclude this paper
in section 5.

2. The normal form

An n × n × n continuous tripartite quantum system can be conveniently described via its
Wigner phase-space distribution functions. The canonical coordinate–momentum variables
for the all-tripartite system

(
qα

i , pα
i ; i = 1, . . . , n;α = A, B, C

)
can be combined in a

6n-dimensional vector, Q = (Q1,Q2, . . . , Q6n), where Q1 ≡ qA
1 ,Q2 ≡ pA

1 , and so
on. Let J ≡ {Jab; a, b = 1, . . . , 6n} be the 6n × 6n matrix of canonical commutators,
Jab ≡ −i[Qa,Qb]; i.e.,

J =
3n⊕

j=1

J1, J1 ≡
(

0 1
−1 0

)
. (1)

Denote � ≡ {�ab; a, b = 1, . . . , 6n} as the covariance matrix for the tripartite system
correlations, �ab = 〈δQaδQb + δQbδQa〉, where δQa ≡ Qa − 〈Qa〉, 〈O〉 ≡ tr(Oρ) and
ρ is the density matrix of the all-tripartite system. The 6n × 6n matrix � that is real and
symmetric can be written in the block form

� =

�AA �AB �AC

�BA �BB �BC

�CA �CB �CC


 , (2)

in terms of Alice, Bob and Charlie’s locations and their correlations. Here, each �αβ , with
α, β = A, B, or C, is a 2n × 2n matrix. To study the entanglement transformation under
local quantum operations for Gaussian states (LOG), we shall only consider a set of locally
nonequivalent Gaussian states [3]. It is well known that any two equivalent Gaussian states
can be converted into each other by means of local symplectic transformations, forming the
group of real symplectic transformations Sp(6n, R) [3]. Consequently, the entanglement
property of a Gaussian state ρ is completely characterized by its real and symmetric 6n × 6n

correlation matrix �. We shall hereafter use �, without explicitly referring to ρ, to discuss the
entanglement transformation under LOG. Furthermore, a physically legitimate state should
satisfy the positivity, which in terms of covariance matrix � is the uncertainty relation

� − iJ � 0. (3)

3 It was found that [7] only gave a criterion for the special three-mode tripartite Gaussian states. We wish to present
the general criterion for this case in errata in future.
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The equal sign holds iff (if and only if) the Gaussian state is pure. Thus, the entanglement
transformation under LOG constitutes actually a set of completely positive definite maps of
Gaussians [9]. Obviously, each of the diagonal blocks �αα, α = A, B, C in equation (2), is
positive definite and can be diagonalized by a symplectic transformation [3]. We can choose
a symplectic transformation Sα ∈ Sp(2n, R), such that

ST
α �ααSα =

n⊕
j=1

Dα
j , (4)

with Dα
j � I2 being a 2 × 2 diagonal matrix of two equal diagonal elements [3]. Here,

I2 denotes the 2 × 2 identity matrix. Therefore, S = ⊕
α Sα ∈ Sp(6n, R) diagonalizes

simultaneously all �αα, α = A, B, C in equation (2), into the form of
{
Dα

j

}
with the property

just described, which is invariance under a symplectic and orthogonal transformation. We
now introduce a theorem in the quest of further simplification for at least two of the three
off-diagonal block matrices, �αβ with α < β (i.e., �AB, �AC and �BC) in � in equation (2).

Theorem (the normal form of n × n × n Gaussian state). Any all-tripartite Gaussian state
specified by its covariance matrix � can be transformed into the state with a covariance matrix
� of the normal form as follows:

� =

�AA �AB �AC

�BA �BB �BC

�CA �CB �CC


 , (5)

with

�AA =
n⊕

µ=1

Dµ, �BB =
2n⊕

µ=n+1

Dµ, �CC =
3n⊕

µ=2n+1

Dµ,

�AB = �T
BA =


U11 · · · U1,n

· · · · · · · · ·
Un,1 · · · Un,n


 ,

�BC = �T
CB =


V11 · · · V1,n

· · · · · · · · ·
Vn,1 · · · Vn,n


 ,

�AC = �T
CA =


P11 · · · P1,n

· · · · · · · · ·
Pn,1 · · · Pn,n


 ,

where both Dµ ∝ I2 and Uii, i = 1, . . . , n, are diagonal 2 × 2 matrices and Vii are upper-
triangular 2 × 2 matrices. The others are in general off-diagonal 2 × 2 matrices.

Proof. By virtue of [3], we can always find such a set of symplectic and orthogonal maps on
individual modes of local phase spaces, i.e., Oα

j ∈ SO2, with α = A, B, C and j = 1, . . . , n,
to be of the form

Oα
j =

(
cos θα

j

/
2 sin θα

j

/
2

−sin θα
j

/
2 cos θα

j

/
2

)
= exp

(
J1θ

α
j

)
. (6)

Here, −π < θα
j � π and J1 is given by the second identity in equation (1). Obviously, Oα

j

does not alter Dα
j ∝ I2 in equation (4). We now consider a symplectic and orthogonal map

consisting of the following two steps. The first step is S = ⊕
α Sα ∈ Sp(6n, R) by which

�αβ −→ �′
αβ = ST

α �αβSβ , with the diagonal (α = β) blocks being diagonalized into the form
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of equation (4). The second step is the map of O = ⊕
α

⊕n
j=1 Oα

j ∈ SO(6n, R) which thus
diagonalizes all Uii and triangularizes Vii but keeps the others off-diagonal in general. We
have thus arrived at the statement of the theorem. �

For the sake of convenience, we shall hereafter denote

Dµ ≡ ξµI2, µ = 1, . . . , 3n,

�AB ≡ (Uij ) ≡ �AB(ην), ν = 1, . . . , 4n2 − 2n,

�BC ≡ (Vij ) ≡ �BC(ην), ν = 4n2 − 2n + 1, . . . , 8n2 − 3n,

�AC ≡ (Pij ) ≡ �AC(ην), ν = 8n2 − 3n + 1, . . . , 12n2 − 3n.

The normal form of an all-tripartite (n × n × n) Gaussian state is therefore characterized
by {ξµ, ην;µ = 1, . . . , 3n, ν = 1, . . . , 12n2 − 3n}. These 12n2 independent parameters are
restricted by the uncertainty relation � − iJ � 0, which can be recognized via equation (3)
and the fact that the symplectic matrix J in equation (1) is invariant under the prescribed
normal form transformation (cf equations (4) and (5)).

3. The criterion in abstract manner

By means of the theorem, we may construct a 12n2 dimensional vector space R12n2
with its

elements (ξ1, . . . , ξ3n, η1, . . . , η12n2−3n), which will also be abbreviated as (ξµ, ην) whenever
it causes no confusion. Thus, an orbit O(�) of � can be completely characterized by the
vector (ξµ, ην) ∈ R12n2

.
It has been established that there are a set of functions, called minimal functions, playing

crucial roles in determining whether it is possible to transform one state � into another �′;
i.e., the criteria of interconvertibility for any two mixed Gaussian states [5, 7, 8]. Let the
matrix function H : R2n×2n

Lαβ
→ R2n×2n, defined as

H(P, V, F ) := P − F(V + iJ )F T + iJ, (7)

where R2n×2n is a 2n×2n matrix space, the subscript Lαβ(α �= β) denotes the restriction of the
subspace R2n×2n

Lαβ
(α �= β) resulting from the uncertainty relation in equation (3), while H,P, V

and F are 2n×2n matrices and J = ⊕n
k=1J1 (equation (1)). For a pair of all-tripartite Gaussian

states (�,�′) with corresponding submatrices �αβ and �′
αβ , we define three independent

functions, H I(�→�′), H II(�→�′) or H II′(�→�′), and H III(�→�′) : R2n×2n
Lαβ

→ R2n×2n by virtue
of equation (7), respectively, as

H I(�→�′)(X) := H
(
�′

AA,�AA, X�−1
AB

)
, (8a)

H II(�→�′)(X) := H(�′
BB,�BB,�′

ABX−1), (8b)

H II′(�→�′)(Y ) := H
(
�′

BB,�BB, Y�−1
BC

)
, (8c)

H III(�→�′)(Y ) := H(�′
CC,�CC,�′

BCY−1). (8d)

The above three independent functions (noting that equations (8b) and (8c) are two equivalent
definitions) constitute the set of minimal functions. Making use of the normal form � and the
above definitions, we can arrive at four propositions as follows.
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Proposition 1 (restricted to Alice’s location). Let � and �I be Gaussian states of an n×n×n

system, where

� =

�AA �AB �AC

�BA �BB �BC

�CA �CB �CC


 , �I =




�′
AA �I

AB �I
AC

�I
BA �BB �BC

�I
CA �CB �CC


 .

Then � → �I under LOG at Alice’s location iff

H I(�→�I)
s

(
�I

AB

) ∈ S
(�→�I)
I (9)

and

�I
AB�−1

AB = �I
AC�−1

AC, (10)

where

S
(�→�I)
I := {

H I(�→�I)
s

(
�I

AB

)∣∣∣∣H I(�→�I)
s

(
�I

AB

)∣∣ � 0
}
, (11)

with
∣∣H I(�→�I)

s

(
�I

AB

)∣∣ being the leading principal minor of H I(�→�I)
(
�I

AB

)
, and s =

1, . . . , 2n [10].

Proposition 2 (restricted to Bob’s location). Let �I and �II be Gaussian states of an n×n×n

system, where

�I =




�′
AA �I

AB �I
AC

�I
BA �BB �BC

�I
CA �CB �CC


 , �II =




�′
AA �′

AB �I
AC

�′
BA �′

BB �I
CC

�I
CA �I

CB �CC


 .

Then �I → �II under LOG at Bob’s location iff

H II(�I→�II)
s

(
�I

AB

) ∈ S
(�I→�II)
II (12a)

or

H II′(�I→�II)
s

(
�I

BC

) ∈ S
(�I→�II)

II′ , (12b)

and (
�I

AB

)−1
�II

AB = (
�I

BC

)−1
�II

BC, (13)

where S
(�I→�II)
II and S

(�I→�II)

II′ are defined similarly as in equation (11) with their individual
functions, respectively.

Proposition 3 (restricted to Charlie’s location). Let �II and �′ be Gaussian states of an
n × n × n system, where

�II =




�′
AA �′

AB �I
AC

�′
BA �′

BB �I
BC

�I
CA �I

CB �CC


 , �′ =




�′
AA �′

AB �′
AC

�′
BA �′

BB �′
BC

�′
CA �′

CB �′
CC


 .

Then �II → �′ under LOG at Charlie’s location iff

H III(�II→�′)
s

(
�I

BC

) ∈ S
(�II→�′)
III (14)

and (
�II

BC

)−1
�′

BC = (
�II

AC

)−1
�′

AC, (15)

where S
(�II→�′)
III is defined similarly as in equation (11).
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Proposition 4 (� → �′ under LOG). Let � and �′ be Gaussian states of an n×n×n system
with 2n × 2n submatrices �αβ and �′

αβ , respectively, where α, β = A, B, C. Then � → �′

under LOG iff there exist two of the matrices, X, Y ∈ R2n×2n
L , such that (� is an empty set)

S
(�→�′)
1 := S

(�→�I)
I ∩ S

(�I→�II)
II �= �, (16)

S
(�→�′)
2 := S

(�I→�II)

II′ ∩ S
(�II→�′)
III �= �, (17)

together with �I
AB�−1

AB = �I
AC�−1

AC,
(
�I

AB

)−1
�II

AB = (
�I

BC

)−1
�II

BC, and
(
�II

BC

)−1
�′

BC =(
�II

AC

)−1
�′

AC (equations (10), (13) and (15)).

Proof of proposition 1. This proposition tells about what conditions must be satisfied when a
LOG is applied on all n modes merely in system A and two symplectic operations in systems
B and C. If we want to implement the LOG, such a map has to be Gaussian completely positive
[9], which is reflected on the covariance matrix level as a map of

� �→ MT �M + G, (18)

where M and G are real 6n × 6n matrices and G is also symmetric. The matrix inequality

G + iJ − iMT JM � 0 (19)

incorporates the complete positivity of the map. For the case of proposition 1, the completely
positive map (18) can be reduced as

�I = (M I)T �M I + GI. (20)

This represents a LOG restricted to Alice’s location and symplectic operations to Bob and
Charlie’s locations, where either � or �I is already in the normal form, i.e., �αα

(
�I

αα

)
and �αβ

(
�I

αβ

)
(α �= β) are chosen according to the theorem, corresponding to respective

submatrices. We can directly choose M I = ⊕3
α=1M

I
α and GI = ⊕3

α=1G
I
α , where M I

B,M I
C ∈

Sp(2n, R),GI
B = GI

C = 0 and GI
A is symmetric. From equation (20), we can easily derive

the following six reduced equations:

�BB = (
M I

B

)T
�BBM I

B (21a)

�BC = (
M I

B

)T
�BCM I

C (21b)

�CC = (
M I

C

)T
�CCM I

C (21c)

and

�′
AA = (

M I
A

)T
�AAM I

A + GI
A (22a)

�I
AB = (

M I
A

)T
�ABM I

B (22b)

�I
AC = (

M I
A

)T
�ACM I

C. (22c)

Equations (21) demand that M I
B and M I

C be both symplectic and orthogonal matrices. Hence,
we can always choose

M I
B =

n⊕
i=1

Oi, M I
C =

2n⊕
i=n+1

Oi,
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where Oi is given by equation (6). The matrix inequality (19) amounts to the reduced matrix
inequality

H I(�→�I) : GI
A + iJn − i

(
M I

A

)T
JnM

I
A � 0. (23)

It is now very apparent that H I(�→�I) is a 2n × 2n Hermitian positive definite matrix and
Jn = ⊕n

k=1J1. It had been proved in [8] that det H I(�→�I) is maximal, i.e., the optimal result can
be obtained if we choose all θi = 0, i.e., M I

B = M I
C = ⊕n

i=1Oi = ⊕2n
i=n+1Oi = ⊕n

i=1I2 = I(2n).
Here, I(2n) denotes a 2n × 2n identity matrix. Thus we have the results:

M I
A = (

�I
AB�−1

AB

)T
(24)

and

GI
A = �′

AA − �I
AB�−1

AB�AA
(
�−1

AB

)T (
�I

AB

)T
. (25)

If we bring the results of equations (24) and (25) into definition (8a), then H I(�→�I)
(
�I

AB

)
i.e., the minimal function for the case of proposition 1, can be obtained. By means of the
theorem that Hermitian matrix is positive definite iff all leading principal minors of H I(�→�I)

are positive, the inequality condition (23) amounts to condition (9). With regard to equality
of equation (10), we can easily obtain it from equations (22b) and (22c). We thus complete
the proof of proposition 1. �

Proof of propositions 2 and 3. It is very easy for one to do it by a method analogous to the
proof of proposition 1. �

Proof of proposition 4 (� → �′ under LOG). In order to complete the proof, we need to
break a whole transformation � → �′ into three partial transformations: � → �I,�I → �II

and �II → �′; each of them is restricted in one system as a LOG and in the other two systems
as symplectic operations (cf figure 1). Set �I and �II as the two covariance matrices that
represent two intermediate states,

�I =

 �′

AA X �I
AC(X)

X �BB �BC

�I
CA(X) �CB �CC


 , (26)

and

�II =




�′
AA �′

AB �I
AC(X)

�′
BA �′

BB �I
BC

�I
CA(X) �I

CB �CC


 (27)

or

�II′ =




�′
AA �′

AB �I
AC(Y )

�′
BA �′

BB Y

�I
CA(Y ) Y �CC


 , (28)

where �I
AC(X)

(
�I

CA(X)
)

or �I
AC(Y )

(
�I

CA(Y )
)

can be obtained by equality conditions (10)
and (15). Firstly, according to propositions 1 and 2, both � → �I and �I → �II under LOG
iff equations (9), (10), (12a) or (12b) and (13) hold simultaneously. This means that iff matrix
X ∈ R2n×2n

L exists such that

S
(�→�′)
1 := S

(�→�I)
I ∩ S

(�I→�II)
II �= �, (29)

together with �I
AB�−1

AB = �I
AC�−1

AC and
(
�I

AB

)−1
�II

AB = (
�I

BC

)−1
�II

BC (equations (10) and
(13)), then both � → �I and �I → �II under LOG. Finally, by virtue of propositions 2
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Alice

Bob

Charlie

Alice

Alice Alice

Charlie

(Λ) (ΛΙ)

(ΛΙΙ)(Λ )'

Bob

Charlie

Bob

Charlie

Bob

Charlie

Figure 1. The square blocks on the diagonal labelled as Alice, Bob and Charlie, respectively,
represent three parties in quantum communication while the other non-diagonal square blocks just
denote their correlativity. The transformation from � to �′ can be decomposed into three steps as
� → �I, �I → �II and �II → �′, which are restricted in one system as LOG and in the other
two as symplectic operations, respectively.

and 3, we conclude in the same manner as above that �I → �II and �II → �′ under LOG iff
matrix Y ∈ R2n×2n

L exists so that

S
(�→�′)
2 := S

(�I→�II)

II′ ∩ S
(�II→�′)
III �= �, (30)

together with
(
�I

AB

)−1
�II

AB = (
�I

BC

)−1
�II

BC and
(
�II

BC

)−1
�′

BC = (
�II

AC

)−1
�′

AC
(equations (13) and (15)). Then we arrive at the content of proposition 4. �

In view of proposition 4, it is clear that the conditions of convertibility for all-tripartite
Gaussian states are much stricter than for any bipartite cases as here equality restrictions arise.
This new type of restriction on the convertibility does not appear in bipartite cases as it is not
a necessity for complete positivity of LOG but a speciality of tripartite cases.

4. Necessary conditions in an efficient manner4

Presented thus far is a necessary and sufficient criterion for the interconvertibility between
all-tripartite Gaussian states. However, due to its abstractivity in mathematics, it is yet to
provide an operable method for practically checking whether given n × n × n Gaussian states
are interconvertible or not. In fact, proposition 4 practically transforms a complex problem,
a 6n × 6n Hermitian matrix, into a relatively simple set of 2n × 2n matrices, so that the
positivity of the original 6n × 6n matrix is obtained in terms of a set of matrix inequalities

4 All of our proofs of the propositions in section 4 are based on the fact that another of our proofs (in [8]) is complete.
Now we know that it is not complete though the corresponding proposition is very likely to be real. This means that
we cannot be sure that the method proposed in section 4 is necessarily applicable. We hope that somebody can give
the full proof for note (11) in [8] in the future.
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and equalities. In the following, we shall present an efficient and more practical criterion
in terms of polynomial inequalities that can be inferred from proposition 4. To achieve a
polynomial-based operable criterion, the 12n2-dimensional parameter (ξµ, ην)-vector space
would rather be adopted than the original all-tripartite covariance matrix space. We shall also
determine whether a block Hermitian matrix is positive by using the following lemma.

Lemma 2. If a 2n × 2n matrix H � 0, then both Hµµ � 0 and tr Hµµ � 0, where H is
Hermitian and Hµµ are 2 × 2 blocks on the diagonal of H.

Proof. See [8], proof of proposition 1. �

Defining a function

Fα(aα, bα, cαβ) := (aα)2 − aα

∑
β

bβ‖cαβ‖2
F +

∣∣∣∣∣∣
∑

β

bβcαβcβα

∣∣∣∣∣∣
−


1 − 2

∑
β

|cαβ | +
∑
β,γ

|cαβ ||cγα|

 ,

where

cαβ = cαβ(ηληρ) =




∑n
l=1 U

T

lαU ′T
βl∑n

l=1 U(α−n)lU
′
l(β−n)(

or
∑n

l=1 V
T

l(α−n)V
′T
(β−n)l

)
∑n

l=1 V (α−2n)lV
′
l(β−2n)

with α, β = 1, . . . , n, n + 1, . . . , 2n or 2n + 1, . . . , 3n, respectively, for the above three cases.
Lα denotes the restriction to the corresponding subspace RLα

resulting from the uncertainty
relation. Ulα(V lα) are the 2 × 2 matrix blocks of the inverse of U(V ), and ηλ are the elements
of U(V )−1 (corresponding to ηλ), and ‖‖F denotes the Frobenius norm. For a pair (�,�′) of
all-tripartite covariance matrices with their corresponding vectors (ξα, ηλ) and (ξ ′

α, η′
λ), where

α = 1, . . . , 3n, and λ = 1, . . . , (12n2 − 3n), we define four families of minimal functions,
hI(�→�′)

µ , hII(�→�′)
ν or hII′(�→�′)

ν , hIII(�→�′)
σ :

R1
L × R2

L × · · · × R(4n2−2n)
L → R

or

R(4n2−2n+1)
L × R(4n2−2n+2)

L × · · · × R(8n2−3n)
L → R

as

hI(�→�′)
µ (xλ) := H I

µ[ξ ′
µ, ξα, cµα(xλ)], (31a)

hII(�→�′)
ν (xλ) := H II

ν [ξ ′
ν, ξβ, cνβ(xλ)], (31b)

hII′(�→�′)
ν (yρ) := H II′

ν [ξ ′
ν, ξβ, cνβ(yρ)], (31c)

hIII(�→�′)
σ (yρ) := H III

σ [ξ ′
σ , ξγ , cσγ (yρ)], (31d)

where µ = 1, . . . , n, ν = n + 1, . . . , 2n and σ = 2n + 1, . . . , 3n, and definition (31b) is
equivalent to definition (31c).
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Proposition 1′ (restricted to Alice’s location). Let � and �I be Gaussian states of an
n × n × n system with vectors (ξµ, ξν, ξσ , ηλ, ητ , ηκ) and

(
ξ ′
µ, ξν, ξσ , ηI

λ, ητ , η
I
κ

)
, respectively,

where µ = 1, . . . , n, ν = n + 1, . . . , 2n, σ = 2n + 1, . . . , 3n, λ = 1, . . . , (4n2 − 2n),

τ = (4n2 − 2n + 1), . . . , (8n2 − 3n) and κ = (8n2 − 3n + 1), . . . , (12n2 − 3n). If � → �I

under the LOG at Alice’s location, then

(i) ξ ′
µ/ξµ � 1

2

n∑
α=1

‖cµα(U)‖2
F,

(ii) hI(� → �I)µ
(
ηI

λ

)
� 0,

(iii) �I
AC�−1

AC = �I
AB�−1

AB (equations (10)),

where

ξµ =
n∑

α=1

ξα‖cµα‖2
F

/
n∑

α=1

‖cµα‖2
F.

Proposition 2′ (restricted to Bob’s location). Let �I and �II be Gaussian states of an
n×n×n system with vectors

(
ξ ′
µ, ξν, ξσ , ηI

λ, ητ , η
I
κ

)
and

(
ξ ′
µ, ξ ′

ν, ξσ , η′
λ, η

I
τ , η

I
κ

)
, respectively.

If �I → �II under the LOG at Bob’s location, then

(i) ξ ′
ν/ξν � 1

2

2n∑
β=n+1

‖cνβ(U)‖2
F = 1

2

2n∑
β=n+1

‖cνβ(V )‖2
F,

(ii) hII(�I→�II)
ν

(
ηI

λ

)
� 0 or hII′(�I→�II)

ν

(
ηI

τ

)
� 0,

(iii)
(
�I

AB

)−1
�II

AB = (
�I

BC

)−1
�II

BC (equations (13)),

where

ξν =
2n∑

β=n+1

ξβ‖cνβ‖2
F

/
2n∑

β=n+1

‖cνβ‖2
F.

Proposition 3′ (restricted to Charlie’s location). Let �II and �′ be Gaussian states of an
n × n × n system with vectors

(
ξ ′
µ, ξ ′

ν, ξσ , η′
λ, η

I
τ , η

I
κ

)
and (ξ ′

µ, ξ ′
ν, ξ

′
σ , η′

λ, η
′
τ , η

′
κ), respectively.

If �II → �′ under the LOG at Charlie’s location, then

(i) ξ ′
σ /ξσ � 1

2

3n∑
γ=2n+1

‖cσγ (V )‖2
F,

(ii) hIII(�II→�′)
σ

(
ηI

τ

)
� 0,

(iii)
(
�II

BC

)−1
�′

BC = (
�II

AC

)−1
�′

AC (equations (15)),

where

ξσ =
3n∑

γ=2n+1

ξγ ‖cσγ ‖2
F

/
3n∑

γ=2n+1

‖cσγ ‖2
F.

We can conclude all of the above three propositions with the following proposition.

Proposition 4′ (� → �′ under the LOG). Let � and �′ be Gaussian states of an
n × n × n system with vectors (ξα, ηβ) and (ξ ′

α, η′
β), respectively, where α = 1, . . . , 3n

and β = 1, . . . , (12n2 − 3n). If � → �′ under the LOG, then two points

(xλ) ∈ (
hI(�→�′)

µ

)−1
(0) ∩ (

hII(�→�′)
ν

)−1
(0)
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and

(yρ) ∈ (
hII′(�→�′)

ν

)−1
(0) ∩ (

hIII(�→�′)
σ

)−1
(0)

exist such that both sets

S1 = {xλ | g1(xλ) � ξ ′
µ/ξµ} ∩ {xλ | g2(xλ) � ξν/ξ

′
ν} (32)

and

S2 = {yρ | g′
2(yρ) � ξ ′

ν/ξν} ∩ {yρ | g3(yρ) � ξσ /ξ ′
σ } (33)

are non-empty, together with equality conditions (equations (10), (13) and (15)). Here,

g1(xλ) := 1

2

n∑
α=1

‖cµα(U)‖2
F,

g2(xλ) := 2

/ 2n∑
β=n+1

‖cνβ(U)‖2
F,

g′
2(yρ) := 1

2

2n∑
β=n+1

‖cνβ(V )‖2
F,

g3(yρ) := 2

/ 3n∑
γ=2n+1

‖cσγ (V )‖2
F.

Proof of proposition 1′. With the definition of matrix H I(�→�I) in the proof of proposition 1
(equation (23)), we have

H I(�→�I) = �′
AA − �I

AB�−1
AB�AA

(
�−1

AB

)T (
�I

AB

)T
+ iJn − i

(
�I

AB�−1
AB

)
Jn

(
�I

AB�−1
AB

)T
. (34)

Note lemma 2, according to proposition 1 iff H I(�→�II)
(
�II

AB

)
is positive definite and

�I
AB�−1

AB = �I
AC�−1

AC, then � → �I under the LOG; we then have both H I
µµ � 0 and

tr H I
µµ � 0, if H I(�→�I) � 0. With the definitions of various �αβ in the theorem, we can

evaluate tr H I
µµ and det H I

µµ leading to

tr H I
µµ = 2ξ ′

µ −
n∑

α=1

ξα‖cµα(U)‖2
F (35)

and

det H I
µµ = (ξ ′

µ)2 − ξ ′
µ

n∑
α=1

ξα‖cµα‖2
F +

∣∣∣∣∣
n∑

α=1

ξαcµαcαµ

∣∣∣∣∣ −

1 − 2

n∑
α=1

|cµα| +
n∑

α,γ=1

|cµα||cγµ|

 .

(36)

We have thus arrived at the statement of proposition 1′. �

One can proceed with similar steps in the proof of proposition 1′ to arrive at the conclusions
of propositions 2′ and 3′. Further, by using the results of propositions 1′, 2′ and 3′, one can
easily arrive at proposition 4′, the final criterion for � → �′ under LOG.
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5. Discussion and conclusions

Proposition 4′ constitutes the main result of the present paper. Its derivation involves a
systematic reduction under the constraints required by LOG. The key intermediate step is
proposition 4, which reduces the complicated conditions in the original matrix space of
R6n×6n to a set of much simplified problems in the matrix space of R2n×2n. Proposition 4′

further reduces the matrix-space criterion to a polynomial-based (parameter-space) criterion
that is much more operable. It is easy to show that proposition 4′ readily recovers our previous
result for this special 1×1×1 case [7]. In comparison with bipartite cases, the additional party
in tripartite Gaussian states under LOG results in additional constraints with the equalities
in equations (10), (13) and (15) in proposition 4′. Obviously, these equalities have nothing
to do with the complete positivity of LOG but with the intrinsic property of the multipartite
Gaussian covariance matrix. The present work therefore also represents a feasible approach
to arrive at the necessary criterion for the interconvertibility between all-multipartite Gaussian
states.
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